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ABSTRACT 

This paper presents an analytical non-dimensional model to analyze crack propagation in a z-
pinned double cantilever beam specimen (DCB) under Mode I loading. Effect of various design 
parameters on the crack bridging length and apparent fracture toughness are investigated using 
this model. The efficacy of the analytical model is evaluated by comparing the same with 3D FE 
simulations of the DCB. In the FE model the z-pins are modeled as discrete non-linear elements. 
Bi-linear cohesive elements are used ahead of the crack tip to account for the inherent fracture 
toughness of the composite material. The results for load-deflection and crack length obtained 
from the analytical model and the FE model are compared and found to be in good agreement. 
Proposed non-dimensional analytical model will be useful in the design of translaminar 
reinforcements for composite structures. 

INTRODUCTION 

Delamination is one of the most significant failure modes in laminated composites. 
Translaminar reinforcements can enhance the delamination resistance and damage tolerance of 
composites significantly [1]. Stitching, z-pinning and 3D weaving are some of the methods by 
which translaminar reinforcements can be provided in a composite laminate. It is also known that 
sparse through-the-thickness reinforcements are not beneficial, and at the same time excessive 
amount of reinforcement also results in damage to the composite structure further degrading its 
properties [2]. 
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The effect of z-fiber on delamination of composites has been studied extensively. While FE 
models that account for each and every reinforcement may be more accurate in predicting the 
damage tolerance, they tend to be computationally expensive for realistic structures. On the other 
hand analytical models that smear the reinforcements as a continuous element are efficient and 
provide insight into the mechanics, but tend to be unrealistic in some situations.  

Experimental approaches involve measurement of apparent fracture toughness [3], 
characterization of pull-out process of z-fiber [4] and crack propagation [5]. Analytic models are 
also available to find apparent fracture toughness and to establish the relationship between various 
design parameters [6-8]. Numerical studies focused on crack initiation and progressive 
delamination modeling in which J-integral, VCCT or cohesive zone method [9-11] were primarily 
used. 

In this paper the effect of z-pins on the fracture toughness of laminated composites is 
investigated. A non-dimensional analytical model is proposed. Bridging zone developed by the z-
pins is analyzed using a beam on elastic foundation model although the foundation is neither 
elastic nor linear. The model is used to find the effect of various parameters of the z-pinned DCB 
specimen on the force-deflection relation and the force-crack length relation. The analytical model 
is non-dimensionalized so that it can serve as a design tool in selecting appropriate translaminar 
reinforcements, z-pins in this case. An expression for apparent fracture toughness or effective 
fracture toughness is derived. Furthermore, the maximum pin friction that can be allowed before 
the composite beam itself fails is calculated. 

The efficacy of the analytical model is verified by finite element simulation of the DCB 
specimen. In the FE simulation, the ligaments of the DCB are modeled using shell elements. 
Cohesive elements are used to simulate the delamination and discrete non-linear elements are 
used to model the z-pins. The agreement between the analytical model and FE simulations is 
found to be excellent for various results such as load-deflection, load-crack length and effective 
fracture toughness. The non-dimensional analytical model could be a useful design tool in 
selecting z-pins for composite structures to improve interlaminar fracture toughness 

 

ANALYTIC MODEL 

The DCB specimen analyzed is shown in Fig. 1. The initial crack length (AB in Fig.1) is a0. 
The current crack length (AD) is denoted as a. The region between the initial crack tip and the 
current crack tip (BD), which is of length of (a-a0), consists of a bridging zone CD of length c and 
a zone BC of length (ap-a0) where the pins have been completely pulled out of the composite 
beam. The distance ap (AC in Fig.1) can be thought of as the apparent crack length. In the 
bridging zone the pull-out of pins is partial. Beyond the current crack tip D the pins are assumed 
to be intact. A pair of transverse forces F is applied at the tip of the DCB. The relative deflection 
of the DCB ends is δ. Our goal is to determine the relationships among F, a, c and δ.  

We assume the shear deformation is negligible and use Euler-Bernoulli beam equations to 
model the ligaments of the DCB. We assume that there is sufficient friction between the z-pins 
and the composite material surrounding it. The relation between the frictional force (f) and pull 
out or slip distance (ds) is idealized as shown in Fig. 2. When the pins are intact they can exert a 
maximum friction force of fm. As the pins pull out of the material, the loss of friction is 
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where N is z-pin density expressed as number of z-pins/unit area. 

The Euler-Bernoulli beam equation for one of the ligaments, say upper ligament, of the DCB 
can be written as: 
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where b is the beam width in the y-direction. The effective bending rigidity of one of the 
ligaments of the DCB is represented by the term EI. For a laminated composite the flexural 
rigidity can be taken as EI=bD11. Substituting for p from Eq. (3), we obtain  
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The pullout length sd  is actually equal to 2w, where w is the deflection of the top or bottom 

beam. Hence, the governing equation takes the form  
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The origin of the x-coordinate is assumed to be at C, beginning of bridging zone. One should 

note that the origin moves as the crack propagates. The four boundary conditions are: 
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In the above equation w0 is a prescribed deflection at Point C in Fig. 1. This value will be less 
than h/2 in the beginning and will increase to a maximum value of h/2 as the DCB is loaded. As 
the crack propagates, the bridging zone will also move with the crack, but the crack face opening 
displacement will remain as h at C with 2w(0)=ds(0)=h. The terms Vz and Mx, respectively, are the 
bending moment and transverse shear force on the beam cross section. 

One should note that the bridging length c is still an unknown and we need an equation to 
determine c. It can be determined from the fact that the strain energy release rate at the actual 



 

crack tip should be equal to the Mode I fracture toughness at the instant of crack propagation. The 
energy release rate can be determined from the equation derived by Sankar [12] as  
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Thus the condition for determining c is 
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Non-dimensional model 

Before we solve the above equations we will non-dimensionalize the equations and BCs 
appropriately. Normalizing the length dimensions by h and forces by Eh2, the governing equation 
and the BCs take the following form: 
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where the non-dimensional fracture toughness is given by 
12 Ic

Ic
GG

Eh
=%  

The solution for the governing Eq. (9) is 
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where 4 2 mpλ =% %  

The boundary condition at the point  𝑥෤ = 0 varies since deflection at this point  𝑤෥଴ increases 
from zero at the beginning of loading to 0.5 when bridging zone is completely developed. Once 
bridging zone is completely developed this value remains constant at 0.5 with additional 
increment of pa% since the fully developed bridging zone is preserved and it propagates as the crack 
tip advances.  

 
 
 

 

Figure 3: Flowchart of the procedures for solving the non-dimensional governing equation 

 
The procedures to solve the above set of equations are depicted in Fig. 3. The initial data 

includes the beam properties, characteristics of the z-pins and the fracture toughness GIc. The 



 

deflection at the left end of the bridging zone ( 𝑥෤ = 0 ) begins to increase as the load is applied. 
We need to use an iterative procedure as shown as the bridging length (𝑐̃ ) is not known a priori.   
The strain energy release rate condition at the right end of the bridging zone ( 𝑥෤ = 𝑐̃ ) as given by 
Eq. (11) is then used to check for correct value of c%  . After bridging zone is fully developed, 
bridging length corresponding to every increment of crack length can be determined.  

RESULTS FROM THE NON-DIMENSIONAL MODEL 

The numerical values used in the examples are given in Table 1. Bridging length and crack 
length were computed for the case of 𝑝෤௠ = 1.37 × 10ିସ and 𝐺෨ூ௖ = 1.4 × 10ିହ .  

Table 1:  The various dimensions and properties used in the numerical simulation 

b  20 mm 
h  1.6 mm 
E1 138 Gpa 
E2 11 GPa 
ν12 0.34 
G12 4.4 GPa 
GIc 258 N/m  pa 54 - 64 mm 

 

 
The force F acting on the DCB and opening displacement δ at the end of the beam can be 

obtained using the following relations: 
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The variation of bridging length c and crack length a as a function of DCB deflection δ are 

shown in Fig. 4.  Bridging length begins to increase with loading for a given initial crack length
0a . This bridging length reaches the maximum value when the bridging zone is fully developed. 

This maximum value starts to decrease slightly as the crack propagates and eventually becomes a 
constant. This means that bridging length required for fully developed bridging zone is dependent 
on the initial crack length for transverse loading of the DCB. However, if a pair of moments is 
applied at the ends of the DCB, the steady state will be preserved and the bridging length will 
remain a constant as the crack propagates.  

 



 

 

Figure 4. Bridging length and crack length as a function of DCB deflection 

 
 
Non-dimensional stable bridging length (𝑐̃) can be expressed in terms of non-dimensional 

fracture toughness 12 c
c
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%  and non-dimensional frictional force 12 m

m
pp

E
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% . Plot of stable 

bridging length for various 𝐺෨௖ and 𝑝෤௠ is shown in Fig. 5. According to this result, the value of 
stable bridging length decreases with increasing 𝐺෨௖ for the given 𝑝෤௠. Likewise 𝑐̃ reduces as 𝑝෤௠ 
increases for a given 𝐺෨௖.  

 
 

 

Figure 5. Non-dimensional bridging length 

 



 

Apparent fracture toughness  

Non-dimensional apparent fracture toughness (𝐺෨ூ௖ି௔௣௣) can be computed as 
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where (0)κ% is the non-dimensional curvature at Point C, beginning of the bridging zone. As 

shown in Fig. 6  𝐺෨ூ௖ି௔௣௣ varies linearly with increasing 𝐺෨ூ௖ or 𝑝෤௠. 
 
 

 

Figure 6. Non-dimensional apparent fracture toughness 

 
 
The relationship is exactly same as in the equation based on energy balance. As the crack 

propagates it has to overcome the frictional forces in the z-pins. The amount of extra work done is 
equal to the area under the load-deflection diagram in Fig. 2. Thus the apparent fracture toughness 
can be derived as: 
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Multiplying throughout by (12/Eh) we obtain the above relation in a non-dimensional form as: 
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Maximum frictional force  

Even though large frictional force between the z-pin and the surrounding matrix material is 
desirable for increased fracture toughness, a frictional force beyond a critical value will cause the 
beam to fail. The maximum normal strain in a beam cross section is given by  
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Note the strain is already non dimensional and the RHS of the above equation can be written 
as 
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 where κ% is actually the non-dimensional curvature. The non-dimensional curvature (𝜅̃) has the 
maximum value at 𝑥෤ = 0. Using Eq. (15) we obtain 

 
1
2Ic mG pκ = +% %%       (20) 

Let us assume the allowable strain in the composite is given by uε
 Then 
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From the above equation one can derive  
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The above equation provides an upper limit on the z-pin density which should be taken into 

consideration in the design of translaminar reinforcements. 



 

 

Figure 7.  Non-dimensional curvature as a function of maximum friction force and inherent fracture toughness 

 
 
FE SIMULATION 

Three-dimensional FE analysis was used to simulate crack propagation in the DCB specimen 
with z-pins. Each z-pin was modeled separately by using a discrete element whose behavior is 
defined by linearly decreasing force as shown in Fig. 2. The configuration of DCB specimen is 
depicted in Fig.8. The material properties used are given in Tables 1 and 2. 

 
 
 

 

Figure 8. The configuration of DCB specimen [5] 

 
 



 

 
 

Table 2. Configuration parameters of the DCB 

0a  49 mm 
z-pin density 0.5 % 
z-pin diameter 0.28 mm 

mF  18.43 N 

 
Delamination propagation in between the z-pins is simulated using cohesive elements. This 

element is characterized by bi-linear traction separation law [11] given by  
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The above parameters were taken as: 𝐾 = 10଺ N/mm, σ୫ = 50 Mpa and  𝐺Iୡ = 258 N/m  

 
 

 

Figure 9. Traction- separation law for the cohesive element 

 

 

 



 

FE analysis was conducted using ABAQUS®. Shell element (S4) was used for DCB and 
cohesive element (COH3D8) and nonlinear spring element (CONN3D2) were implemented 
between two ligaments of the DCB as shown in Fig.10. 

 
 

 

Figure 10. Cohesive and spring elements in the FE model of the DCB 

 
The load-displacement curve from the FE simulation is shown in Fig.11. In the same figure 

the delamination length a is also shown as a function of the opening displacement δ. The 
agreement between the analytical model and the FE simulations is very good for both load-
displacement and delamination length. 

 
 
 

 

 

Figure 111. Load-displacement curve and crack length variation as a function of DCB deflection 

 
 



 

 
SUMMARY AND CONCLUSIONS 

Mode I delamination propagation in DCB specimens containing z-pins is studied. A simple 
analytical model has been developed and suitable non-dimensional parameters have been 
identified. The load-deflection curve of the DCB specimen was calculated using the analytical 
model. It is seen that the bridging zone, wherein the pins are partially pulled out, develops as the 
crack propagates, but attains a steady state value. The length of the bridging zone is a function of 
the inherent Mode I fracture toughness and the frictional force between the z-pins and the 
surrounding material. An expression was derived for the apparent or effective fracture toughness. 
Although increase in frictional force as the z-pins increases the fracture toughness, there is an 
upper limit to this friction as the DCB ligaments would break if the friction is very high. The 
limiting value of the pin friction is derived.  

The efficacy of the analytical model was evaluated by simulation the DCB specimen using 
finite elements. In the FE model the delaminatiom propagation is simulated by cohesive elements 
and the z-pins are modeled as discrete non-linear elements. The results for load-deflection curve 
and the crack bridging zone length agreed quite well with the analytical model. 

The non-dimensional model with few parameters will serve as a design tool when 
translaminar reinforcements such as z-pins are selected for laminated composite structures in 
order to improve their fracture toughness. The analytical models will also be useful in 
optimization studies and simulation of large composite structures containing translaminar 
reinforcements. 
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